T. Barnard, S. Tseng, J.P. Darby, A.P. Bartók, A. Broo, and G.C. Sosso
Leveraging genetic algorithms to maximise the predictive capabilities of the SOAP descriptor
Mol. Syst. Des. Eng., Advance Article , in print (2023). [DOI]A. P. Bartók and J. R. Kermode
Improved Uncertainty Quantification for Gaussian Process Regression Based Interatomic Potentials
Preprint , (2022). [arXiv]S. Klawohn, J. R. Kermode, and A. P. Bartók
Massively Parallel Fitting of Gaussian Approximation Potentials
Preprint , (2022). [arXiv]L. Zhang, B. Onat, G. Dusson, G. Anand, R. J. Maurer, C. Ortner, and J.R. Kermode
Equivariant analytical mapping of first principles Hamiltonians to accurate and transferable materials models
npj Comput. Mater. 8, 158 (2022). [DOI] [arXiv]J. Li, Y. Jin, P. Rinke, W. Yang, and D. Golze
Benchmark of GW Methods for Core-Level Binding Energies
Preprint , (2022). [arXiv]H. Moustafa, P.M. Larsen, M.N. Gjerding, J.J. Mortensen, K.S. Thygesen, and K.W. Jacobsen
Computational exfoliation of atomically thin 1D materials with application to Majorana bound states
Preprint , (2022). [arXiv]L.M. Ghiringhelli, C. Baldauf, T. Bereau, S. Brockhauser, C. Carbogno, J. Chamanara, S. Cozzini, S. Curtarolo, C. Draxl, S. Dwaraknath, Á. Fekete, J. Kermode, C.T. Koch, M. Kühbach, A.N. Ladines, P. Lambrix, M.O. Lenz-Himmer, S. Levchenko, M. Oliveira, A. Michalchuk, R. Miller, B. Onat, P. Pavone, G. Pizzi, B. Regler, G.M. Rignanese, J. Schaarschmidt, M. Scheidgen, A. Schneidewind, T. Sheveleva, C. Su, D. Usvyat, O. Valsson, C. Wöll, and M. Scheffler
Shared Metadata for Data-Centric Materials Science
Preprint , (2022). [arXiv]F. Bertoldo, S. Ali, S. Manti, and K.S. Thygesen
Quantum point defects in 2D materials: The QPOD database
npj Comput. Mater. 8, 56 (2022). [DOI] [arXiv]M. Boley and M. Scheffler
Learning Rules for Materials Properties and Functions
Section 1.4 in H. J. Kulik, et al. Roadmap on Machine Learning in Electronic Structure
Electronic Structure 4, 023004 (2022). [DOI]J. P. Darby, J. R. Kermode, and G. Csányi
Compressing Local Atomic Neighbourhood Descriptors
npj Comput. Mater. 8, 166 (2022). [DOI] [arXiv]C. Draxl, M. Kuban, S. Rigamonti, and M. Scheidgen
Challenges and perspectives for interoperability and reuse of heterogenous data collections
Section 4.1 in H. J. Kulik, et al.
Electronic Structure 4, 023004 (2022). [DOI]
Roadmap on Machine Learning in Electronic StructureL. Foppa, T. A. R. Purcell, S. V. Levchenko, M. Scheffler, and L. M. Ghiringhelli
Hierarchical symbolic regression for identifying key physical parameters correlated with bulk properties of perovskites
Preprint , (2022). [arXiv]L. Foppa, C. Sutton, L. M. Ghiringhelli, S. De, P. Löser, S.A. Schunk, A. Schäfer, and M. Scheffler
Learning design rules for selective oxidation catalysts from high-throughput experimentation and artificial intelligence
ACS Catalysis 12, 2223 (2022). [DOI]L.M. Ghiringhelli
Interpretability of machine-learning models in physical sciences
Section 5.3 in H. J. Kulik, et al.
Electronic Structure 4, 023004 (2022). [DOI] [arXiv]
Roadmap on Machine Learning in Electronic StructureA. Gulans and C. Draxl
Influence of spin-orbit coupling on chemical bonding
Preprint , (2022). [arXiv]N. R. Knosgaard and K. S. Thygesen
Representing individual electronic states for machine learning GW band structures of 2D materials
Nat. Commun. 13, 468 (2022). [DOI] [arXiv]M. Kuban, S. Rigamonti, M. Scheidgen, and C. Draxl
Density-of-states similarity descriptor for unsupervised learning from materials data
Sci. Data 9, 646 (2022). [DOI] [arXiv]A. Mazheika, Y. Wang, R. Valero, F. Vines, F. Illas, L. Ghiringhelli, S. Levchenko, and M. Scheffler
Artificial-intelligence-driven discovery of catalyst “genes” with application to CO2 activation on semiconductor oxides
Nat. Commun. 13, 416 (2022). [DOI]E. Moerman, F. Hummel, A. Grüneis, A. Irmler, and M. Scheffler
Interface to high-performance periodic coupled-cluster theory calculations with atom-centered, localized basis functions
J. Open Source Softw. 7, 4040 (2022). [DOI] [arXiv]T. Purcell, M. Scheffler, L. M. Ghiringhelli, and C. Carbogno
Accelerating Materials-Space Exploration by Mapping Materials Properties via Artificial Intelligence: The Case of the Lattice Thermal Conductivity
Preprint , (2022). [arXiv]M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H.-J. Bungartz, C.Felser, M. Greiner, A. Groß, C. Koch, K. Kremer, W. E. Nagel, M. Scheidgen, C. Wöll, and C. Draxl
FAIR data enabling new horizons for materials research
Nature 604, 635 (2022). [DOI] [arXiv]A. M. Teale, T. Helgaker, A. Savin, C. Adamo, B. Aradi, A. V. Arbuznikov, P. W. Ayers, E. J. Baerends, V. Barone, P. Calaminici, E. Cancès, E. A. Carter, P. K. Chattaraj, H. Chermette, I. Ciofini, T. D. Crawford, F. De Proft, J. F. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. Gidopoulos, P. M. W. Gill, P. Gori-Giorgi, A. Görling, T. Gould, S. Grimme, O. Gritsenko, H. J. A.Jensen, E. R. Johnson, R. O. Jones, M. Kaupp, A. M. Köster, L. Kronik, A. I. Krylov, S. Kvaal, A. Laestadius, M. Levy, M. Lewin, S. Liu, P.-F. Loos, N. T. Maitra, F. Neese, J. P. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello, A. Ruzsinszky, D. R. Salahub, M. Scheffler, P. Schwerdtfeger, V. N. Staroverov, J. Sun, E. Tellgren, D. J. Tozer, S. B. Trickey, C. A. Ullrich, A. Vela, G. Vignale, T. A. Wesolowski, and X. W. Yang
DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science
Phys. Chem. Chem. Phys. , (2022). [DOI] [arXiv]Y. Zhou, C. Zhu, M. Scheffler, and L. M. Ghiringhelli
Ab initio approach for thermodynamic surface phases with full consideration of anharmonic effects – the example of hydrogen at Si(100)
Phys. Rev. Lett. 128, 246101 (2022). [DOI] [arXiv]M. Kuban, Š. Gabaj, W. Aggoune, C. Vona, S. Rigamonti, and C. Draxl
Similarity of materials and data‑quality assessment by fingerprinting
MRS Bulletin Impact section
MRS Bulletin 47, 1 (2022). [DOI] [arXiv]F. Knoop, M. Scheffler, and C. Carbogno
Ab initio Green-Kubo simulations of heat transport in solids: method and implementation
Preprint , (2022). [arXiv]F. Knoop, T.A.R. Purcell, M. Scheffler, and C. Carbogno
Anharmonicity in Thermal Insulators – An Analysis from First Principles
Preprint , (2022). [arXiv]B. Hoock, S. Rigamonti, and C. Draxl
Advancing descriptor search in materials science: feature engineering and selection strategies
New J. Phys. 24, 113049 (2022). [DOI] [arXiv] [data]D. Zavickis, K. Kacars, J. Cīmurs, and A. Gulans
Adaptively compressed exchange in the linearized augmented plane wave formalism
Phys. Rev. B 106, 165101 (2022). [DOI] [arXiv]C. Carbogno, K.S. Thygesen, B. Bieniek, C. Draxl, L.M. Ghiringhelli, A. Gulans, O. T. Hofmann, K. W. Jacobsen, S. Lubeck, J. J. Mortensen, M. Strange, E. Wruss, and M. Scheffler
Numerical Quality Control for DFT-based Materials Databases
npj Computational Materials 8, 69 (2022). [DOI]V. Gavini, S. Baroni, V. Blum, D. R. Bowler, A. Buccheri, J. R. Chelikowsky, S. Das, W. Dawson, P. Delugas, M. Dogan, C. Draxl, G. Galli, L. Genovese, P. Giannozzi, M. Giantomassi, X. Gonze, M. Govoni, A. Gulans, F. Gygi, J. M. Herbert, S. Kokott, T. D. Kühne, K.-H. Liou, T. Miyazaki, P. Motamarri, A. Nakata, J. E. Pask, C. Plessl, L. E. Ratcliff, R. M. Richard, M. Rossi, R. Schade, M. Scheffler, O. Schütt, P. Suryanarayana, M. Torrent, L. Truflandier, T. L. Windus, Q. Xu, V. W.-Z. Yu, and D. Perez
Roadmap on Electronic Structure Codes in the Exascale Era
Model. Simul. Mat. Sci. Eng. , (2022). [arXiv]M. Bowker, S. DeBeer, N.F. Dummer, G.J. Hutchings, M. Scheffler, F. Schüth, S.H. Taylor, and H. Tüysüz
Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT)
Angew. Chem. Int. Ed. 61, e202209016 (2022). [DOI]J. Kangsabanik, M.K. Svendsen, A. Taghizadeh, A. Crovetto, and K.S. Thygesen
Indirect Band Gap Semiconductors for Thin-Film Photovoltaics: High-Throughput Calculation of Phonon-Assisted Absorption
J. Am. Chem. Soc. 144, 19872 (2022). [DOI]L. Sbailò, Á. Fekete, L.M. Ghiringhelli, and M. Scheffler
The NOMAD Artificial-Intelligence Toolkit: turning materials-science data into knowledge and understanding
npj Comput. Mater. 8, 250 (2022). [DOI]H. Shang, X. Duan, F. Li, L. Zhang, Z. Xu, K. Liu, H. Luo, Y. Ji, W. Zhao, W. Xue, L. Chen, and Y. Zhang
Many-core acceleration of the first-principles all-electron quantum perturbation calculations
Comp. Phys. Commun. 267, 108045 (2021). [DOI]M. Gjerding, T. Skovhus, A. Rasmussen, F. Bertoldo, A.H. Larsen, J.J. Mortensen, and K.S. Thygesen
Atomic Simulation Recipes - a Python framework and library for automated workflows
Psi-k Scientific Highlight Of The Month , (2021). [DOI]T. Schäfer, A. Gallo, A. Irmler, F. Hummel, and A. Grüneis
Surface science using coupled cluster theory via local Wannier functions and in-RPA-embedding: The case of water on graphitic carbon nitride
J. Chem. Phys. 155, 244103 (2021). [DOI] [arXiv]P.-P. De Breuck, M. L. Evans, and G.-M. Rignanese
Robust model benchmarking and bias-imbalance in data-driven materials science: a case study on MODNet
J. Phys.: Condens. Matter 33, 404002 (2021). [DOI] [arXiv]C. W. Andersen, R. Armiento, E. Blokhin, G. J. Conduit, S. Dwaraknath, M. L. Evans, Á. Fekete, A. Gopakumar, S. Gražulis, A. Merkys, F. Mohamed, C. Oses, G. Pizzi, G.-M. Rignanese, M. Scheidgen, L. Talirz, C. Toher, D. Winston, R. Aversa, K. Choudhary, P. Colinet, S. Curtarolo, D. Di Stefano, C. Draxl, S. Er, M. Esters, M. Fornari, M. Giantomassi, M. Govoni, G. Hautier, V. Hegde, M. K. Horton, P. Huck, G. Huhs, J. Hummelshøj, A. Kariryaa, B. Kozinsky, S. Kumbhar, M. Liu, N. Marzari, A. J. Morris, A. Mostofi, K. A. Persson, G. Petretto, T. Purcell, F. Ricci, F. Rose, M. Scheffler, D. Speckhard, M. Uhrin, A. Vaitkus, P. Villars, D. Waroquiers, C. Wolverton, M. Wu, and X. Yang
OPTIMADE: an API for exchanging materials data
Scientific Data 8, 217 (2021). [DOI] [arXiv]M. L. Evans, C. W. Andersen, S. Dwaraknath, M. Scheidgen, Á. Fekete, and D. Winston
optimade-python-tools: a Python library for serving and consuming materials data via OPTIMADE APIs
J. of Open Source Softw. 6, 3458 (2021). [DOI]L. Foppa, L.M. Ghiringhelli, F. Girgsdies, M. Hashagen, P. Kube, M. Hävecker, S. Carey, A. Tarasov, P. Kraus, F. Rosowski, R. Schlögl, A. Trunschke, and M. Scheffler
Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence
MRS Bulletin 46, 1016 (2021). [DOI]L. Foppa and L. M. Ghiringhelli
Identifying outstanding transition-metal-alloy heterogeneous catalysts for the oxygen reduction and evolution reactions via subgroup discovery
Top. Catal. 65, 196 (2021). [DOI]L. M. Ghiringhelli
An AI-toolkit to develop and share research into new materials
Nat. Rev. Phys. 3, 724 (2021). [DOI]M. Gjerding, T. Skovhus, A. Rasmussen, F. Bertoldo, A. H. Larsen, J. J. Mortensen, K. S. Thygesen
Atomic Simulation Recipes: A Python framework and library for automated workflows
Comput. Mater. Sci. 199, 110731 (2021). [DOI]M. N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann, N. R. Knøsgaard, M. Kruse, A. H. Larsen, S. Manti, T. G. Pedersen, U. Petralanda, T. Skovhus, M. K. Svendsen, J. J. Mortensen, T. Olsen, and K. S. Thygesen
Recent progress of the Computational 2D Materials Database (C2DB)
2d Mater. 8, 044002 (2021). [DOI]S. Kokott, I. Hurtado, C. Vorwerk, C. Draxl, V. Blum, and M. Scheffler
GIMS: Graphical Interface for Materials Simulations
J. Open Source Softw. 6, 2767 (2021). [DOI]A. Leitherer, A. Ziletti, and L.M. Ghiringhelli
Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning
Nat. Commun. 12, 6234 (2021). [DOI]A. Rasmussen, T. Deilmann, and K. S. Thygesen,
Towards fully automatized GW band structure calculations: What we can learn from 60.000 self-energy evaluations
npj Comput. Mater. 7, 22 (2021). [DOI]X. Ren, F. Merz, H. Jiang, Y. Yao, M. Rampp, H. Lederer, V. Blum, and M. Scheffler
All-electron periodic G(0)W(0) implementation with numerical atomic orbital basis functions: Algorithm and benchmarks
Phys. Rev. Mater. 5, 013807 (2021). [DOI]L. Schmidt-Mende, V. Dyakonov, S. Olthof, F. Ünlü, K. Moritz, T. Lê, S. Mathur, A. D. Karabanov, D. C. Lupascu, L. Herz, A. Hinderhofer, F. Schreiber, A. Chernikov, D. A. Egger, O. Shargaieva, C. Cocchi, E. Unger, M. Saliba, M. Malekshahi Byranvand, M. Kroll, F. Nehm, K. Leo, A. Redinger, J. Höcker, T. Kirchartz, J. Warby, E. Gutierrez-Partida, D. Neher, M. Stolterfoht, U. Würfel, M. Unmüssig, J. Herterich, C. Baretzky, J. Mohanraj, M. Thelakkat, C. Maheu, W. Jaegermann, T. Mayer, J. Rieger, T. Fauster, D. Niesner, F. Yang, S. Albrecht, T. Riedl, A. Fakharuddin, M. Vasilopoulou, Y. Vaynzof, D. Moia, J. Maier, M.Franckevi ̆cius, V. Gulbinas, R. A. Kerner, L. Zhao, B. P. Rand, N. Glück, T. Bein, F. Matteocci, L. Angelo Castriotta, A. Di Carlo, M. Scheffler, and C. Draxl
Roadmap: Organic-inorganic hybrid perovskite semiconductors and devices
APL Materials 9, 109202 (2021). [DOI] [arXiv]B. Onat, C. Ortner, and J.R. Kermode
Sensitivity and Dimensionality of Atomic Environment Representations used for Machine Learning Interatomic Potentials
J. Chem. Phys. 153, 144106 (2020). [DOI] [arXiv]